Course Type	CourseCode	Name of the Course	L	Т	P	Credits
DP	NMEC528	Additive Manufacturing Lab	0	0	3	1.5

CourseObjective

To provide practical knowledge on Additive Manufacturing Processes and their capabilities.

LearningOutcomes

Upon successful completion of this course, students will:

- Able to fabricate different components through Additive Manufacturing Process
- It will help the students to understand the current trend in research on Additive Manufacturing.

Unit	Topicsto beCovered	Lecture Hours	LearningOutcome			
1	Demonstration to Different 3D printers and Introduction to CAD modelling	3	Students will understand the basics of 3D printing			
2	Fabrication of the component through 3D printer using SLA	3				
3	Fabrication of the component through 3D printer using DLP	3	Understanding on the different printing process, their capabilities and limitations.			
4	Fabrication of the component through 3D printer using FDM	3				
5	Experiment on Wire Arc Additive Manufacturing WAAM): Analysis of deposited bead and its characterizations	6	Will understand the WAAM process and its process parameters			
	Introduction to Simufact Additive Manufacturing software	3	Understanding on Simufact software			
7	Simulation of the developed residual stresses in 3D printed part	6	Understand the simulation of Additive Manufacturing Processes			
8	Project + Evaluation	15	Student able to carry out research in the field of Additive Manufacturing			
	TOTAL	42				

Text Books:

- Gibson, I, Rosen, D W., and Stucker, B., Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, 2015
- Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third Edition, World Scientific Publishers, 2010

Reference Books:

 Chec Kai Chua, Kah Fai Leong, 3D Printing and Additive Manufacturing: Principles and Applications: Fourth Edition of Rapid Prototyping, World Scientific Publishers, 2014